RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2017 SECOND YEAR [BATCH 2016-19]

MATHEMATICS [Honours]

Date : 12/12/2017

Answer any five questions from Question Nos. 1 to 8:

Justification needed.

Time: 11 am – 3 pm Paper: III Full Marks: 100

[Use a separate Answer Book for each Group]

Group - A

1. a) Let V be an n-dimensional vector space over the field F and T be a linear operator on V such

 $[5 \times 10]$

[3]

)	that the range and the null space of T are identical. Prove that n is even. Give an example of such a linear operator T.	[2+3]
	b)	Let $V = \Box^3$ and W be a subspace of V generated by the vector $(1, 0, 0)$. Find a basis of the quotient space V_W . Verify that $\dim V_W = \dim V - \dim W$.	[2]
	c)	Let V be the vector space of all $n \times n$ real matrices over \square and $T: V \to V$ be a linear operator $A + A^{t}$.	
		defined by $T(A) = \frac{A + A^t}{2}$, $A \in V$, where A^t denotes transpose of A. Find nullity of T.	[3]
2.	Pro the	V and W be two vector spaces of dimensions n and m respectively over the same field F. eve that L (V, W), the set of all linear transformations from V into W forms a vector space over field F together with addition and scalar multiplications defined by $(T+U)(\alpha) = T\alpha + U\alpha$ and $\Gamma(\alpha) = C(T\alpha)$ for all $T, U \in L(V, W)$ and $C \in F$.	
	Als	so find the dimension of the space $L(V, W)$.	[5+5]
3.	a)	Let V be an n-dimensional vector space over the field F and let $B = \{\alpha_1,,\alpha_n\}$ be an ordered basis for V. i) What is the matrix A of the linear operator T in the ordered basis B, defined by $T\alpha_j = \alpha_{j+1}, \ j=1,,n-1, \ T\alpha_n = 0$?	[3]
		ii) Prove that $T^n = O$ but $T^{n-1} \neq O$.	[2]
	b)	A linear transformation $T: \square^3 \to \square^3$ is defined by $T(x,y,z) = \left(x+z,\frac{5x-y+z}{2},3x+z\right) \forall (x,y,z) \in \square^3$. Find the matrix A of T relative to the ordered basis $\left\{(1,0,0),(0,1,0),(0,0,1)\right\}$ of \square^3 . Deduce that T is invertible. Find T^{-1} and the matrix B of T^{-1} relative to the ordered basis $\left\{(1,0,0),(0,1,0),(0,0,1)\right\}$ of \square^3 . Verify that $B=A^{-1}$.	1+1+1]
4.	a)	Let V and W be two finite dimensional vector spaces over the same field F . Prove that V and W are isomorphic if and only if dim $V = \dim W$.	[5]
	b)	Let $T: \square^3 \to \square^2$ and $U: \square^2 \to \square^3$ be two linear transformations. Prove that UT is not invertible.	[2]

c) Give examples of two matrices which have same characteristic polynomial but are not similar.

- 5. a) Find an orthogonal matrix P such that $P^{-1}AP$ is a diagonal matrix, where $A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$. [5]
 - b) Determine the conditions for which the system of equations

$$x + y + z = b$$

$$2x + y + 3z = b + 1$$

$$5x + 2y + az = b^2$$

has (i) only one solution, (ii) no solution, (iii) many solutions.

there exists a unique vector β in V such that $f(\alpha) = (\alpha \mid \beta)$ for all α in V.

6. a) Let V be a finite dimensional inner product space and f be a linear functional on V. Prove that

[5]

[4]

[3]

[3]

 $[4\times5]$

- b) Let V be a finite dimensional inner product space and T a linear operator on V. Show that range of T* is the orthogonal complement of the null space of T, where T* is the adjoint of T.
- c) Let V be the inner product space C([0,1]) over \square with the inner product $< f,g> = \int_0^1 f(t)g(t)dt$, where C([0,1]) is the set of all continuous real valued maps defined on [0,1]. Let W be the subspace of V spanned by the linearly independent set $\beta = \{t, \sqrt{t}\}$. Using Gram-Schmidt process find an orthonormal basis for W from the basis β of W. [3]
- 7. a) The matrix of $T: \Box^2 \to \Box^2$ is given by $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ relative to the standard ordered basis of \Box^2 . Find T and T* and verify whether T is a normal operator, where T* is the adjoint of T. [2+2+1]
 - b) Let V be a finite dimensional inner product space over $F(= \square \text{ or } \square)$ and let T be an unitary operator on V. Suppose $\lambda \in F$ be an eigen value of T. Show that $|\lambda|=1$. [2]
 - c) Let $T: \Box^2 \to \Box^2$ be the reflection of the points through the line y = -x. Find the matrix of T relative to the standard ordered basis of \Box^2 . [3]
- 8. a) Reduce the quadratic form: $2x^2 + 5y^2 + 10z^2 + 4xy + 12yz + 6zx$ to its normal form. Find also the rank and the signature. [5]
 - b) Let A be any square matrix over \square and its characteristic equation is $x^2 x + 1 = 0$. Find det A and Trace A. [1+1]
 - c) Let V be an inner product space and T be a self-adjoint linear operator on V. Prove that each characteristic value of T is real and characteristic vectors of T associated with distinct characteristic values are orthogonal.

Group - B

Answer any four questions from Question Nos. 9 to 14:

- 9. The plane ax + by + cz + d = 0 bisects an angle between a pair of planes one of which is $\ell x + my + nz = p$. Show that the equation of the other plane is $(a^2 + b^2 + c^2)(\ell x + my + nz p) = 2(a\ell + bm + cn)(ax + by + cz + d)$. [5]
- 10. Prove that the line of shortest distance between z-axis and the variable line $\frac{x}{a} + \frac{z}{c} = \lambda \left(1 + \frac{y}{b}\right)$,

$$\frac{x}{a} - \frac{z}{c} = \frac{1}{\lambda} \left(1 - \frac{y}{b} \right), \text{ (where } \lambda \text{ varies) generates the surface } abz(x^2 + y^2) = (a^2 - b^2)cxy.$$
 [5]

11. a) Write down the law of transformation if the coordinate axes are rotated about the origin such that the new axes have the following direction ratios: $-\frac{b}{\sqrt{a^2+b^2}}, \frac{a}{\sqrt{a^2+b^2}}, 0$;

$$-\frac{ac}{\sqrt{a^2+b^2}}, -\frac{bc}{\sqrt{a^2+b^2}}, \sqrt{a^2+b^2}$$
 and a, b, c. [1]

[4]

[3×10]

[6]

[5]

- b) If a plane intersects a sphere in more than one point, then prove that its intersection with the sphere is a circle.
- 12. Prove that the planes, which cuts the cone $ax^2 + by^2 + cz^2 = 0$ in perpendicular straight lines, touch the cone $\frac{x^2}{b+c} + \frac{y^2}{c+a} + \frac{z^2}{a+b} = 0$. [5]
- 13. The normal at a point P of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ meets the yz-plane and the zx-plane in G and G'respectively. OQ is drawn from the origin O making equal and parallel to GG'. Prove that the locus of Q is the ellipsoid $a^2x^2 + b^2y^2 + c^2z^2 = (a^2 b^2)^2$. [5]
- 14. Show that the equation of the generators of the hyperboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$ through a point $(0, b \sec \theta, c \tan \theta)$ of the hyperbolic section of the hyperboloid by the co-ordinate plane x = 0 are $\frac{x}{\pm a} = \frac{y b \sec \theta}{b \tan \theta} = \frac{z c \tan \theta}{c \sec \theta}$. [5]

Answer <u>any three</u> questions from <u>Question Nos. 15 to 19</u>:

- 15. a) A particle moves in a straight line with an acceleration towards a fixed point in the straight line, which is equal to $\frac{\mu}{x^2} \frac{\lambda}{x^3}$ when the particle is at a distance x from the given point. If it starts from rest at a distance 'a' from the fixed point then show that it oscillates between this distance and the distance $\frac{\lambda a}{2\mu a \lambda}$ and that its periodic time is $\frac{2\pi\mu a^3}{(2a\mu \lambda)^{\frac{3}{2}}}$. [7]
 - b) For a particle moving on a smooth plane curve under the action of conservative forces, show that the change in kinetic energy is equal to work done by the forces. [3]
- 16. a) Find the components of velocity and acceleration of a moving point referred to a set of rectangular axes revolving with uniform angular velocity ω about the origin in their own plane.
 - b) A particle is projected with velocity V from a cusp of a smooth cycloid with axis vertical and vertex downwards, down the arc. Find its time of reaching the vertex. [4]
- 17. a) A particle moves in a straight line with acceleration n²x (distance) towards a fixed point in the line and with an additional periodic push Lcos(pt)[L, n, p are constants]. If the particle starts from rest at a distance 'a' from the centre, find its distance from the fixed point in terms of time.
 - b) A particle of mass m is falling under the influence of gravity through a medium whose resistance equal to μ times the velocity. If the particle be released from rest, then show that the distance fallen through in time t is $g \frac{m^2}{\mu^2} \left(e^{-\frac{\mu}{m}t} 1 + \frac{\mu}{m}t \right)$. [5]

- 18. a) A particle describes a path which is nearly a circle under the action of a central force at the centre of the circle, varying inversely as the nth power of its distance from the centre. Find the condition that the motion may be stable.
- [6]
- b) A particle describes an ellipse under a force which is always directed towards the centre of the ellipse. Find the law of force.
- [4]

[7]

[3]

- 19. a) A particle is projected from an apse at a distance 'a' with a velocity from infinity under the action of a central acceleration $\frac{\mu}{r^{2n+3}}$. Prove that the path is $r^n = a^n \cos(n\theta)$.
 - voro
 - b) A particle describes the curve $r = e^{\theta}$ in such a manner that its radial acceleration is zero. Prove that its angular velocity is constant.

____×___